
A D—A0 56 889 ILLINOIS UNIV AT URBANA—CHAMPAIGN COORDINATED SCIENCE LAB F/S 12/1
FINDING THE INTERSECTION OF Two CONVEX PO4JHEDRA. (U)
OCT 77 0 E MULLER. F P PRePARATA DAABQ7—7 2— C— Q259

UNCLASSIFIED R 793 N1_
Ion

&5889 ______ _______________________

Et4D
OAfl

rIL~ E 0

9 ~-78 .
abc

I.i~ U

LEVEL~I ACT-I OCTOB~RII 1977

I ~~~~ COORDiNATED SCIENCE LABORA TORY

1 APPUED COMPUTATION THEORY GROUP
LC~

1 FINDING THE INTERSECTION
OF TWO CONVEX POLYHEDRA

II
DIE.MULLER and F.P.PREP*RATAI ~~~~~

I j
I • _.__i ~~~~~~ ~I ~~ ~~ ~~~~
1

D D C

1 AUG * 1978

U ULS1~ 1!~U LI L!~

I f thSTBIIUTLON STATEMEIft Al

~~PO~T R-795 1 App ov.d foT public zsIsa.1 UIL.U—ENS 77-2240

I L Di.trthutio~

UNIVERSITY OF ILLINOIS - URBA1J~~,~~ LINOIS
£ 7S 07 10 ”

L~ ~~~~~~~~~~~~~~ _ _ _ _ _ _ _

- __
-

~~~~~~~~~

r

I UNCLASSIFIED
,IICURITY CLASSIF ICATION OF THIS PAGE (N?~.., D.~a Enlm’.d)

I REPORT DOCUMENTATION PAGE BEF O c FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO, 3. RCCIPICNT S C A TA L O G  NUMB ER

‘ 
4. TITLE ( id  SubClll.J S. PC OF REPORT S PERIOD c ED

THE ~~TERSECTION OF TWO ~0NVEX POLYHED~~~~~ ~~~~~~~~ ical ~Lej~~~t I

1 6. PCRF9RMINO ORG. REPORT NUMR
7

R

___________________________________________________ R— 793;_ UILU—ENG_77—2240
L AUTNOR(.) S. CONTRACT OR GRANT NUMSER(.)

I ~1— -~ 1 MCS 76—17321

~~~~
. E.fru].ler ~~ F. P .)Pre~ arata~~_J

DAAB—0 7—72— C—0259 ’

PERFORMING ORGANIZAT ION NAM E AND ADDRESS 10. PROGRAM ELEMENT. PROJ ECT . TASK

I Coordinated Science Laboratory A R E A S WORK UNIT NUMBERS

I University of Illinois at Urban a— Champaign
Urbana, Illinois 61801

I I,. CONTROLLING OFFICE NAME AND ADDRESS . REPORT DATI

Oct~~ _,~~~~ 77)
Joint Services Electronics Program ,~~ . ~ur~e~~ Or PA GES

I 32
IA. MONITORING AGENCY NAME S AO DRESS(SI dIU.,.n I from Controllind Ollic.) IS. SECURITY CLASS. (01 hi. r.port)

1 ~~~ g I
UNCLASSIFIED

I s., OEcLAS$I FICATI ON/OOw NGRAOING
SCHEDULE

14. DISTRIBUTION STATE M ENT (of this R.po,l)

Approved for public release; distribution unlimited

I?. STRIB UT ION STATEMENT ol ffi. ab.jract ,r1j,,,4J ~~Btock 20, II dUl.t.n s Irom R.porI)
— ~~~~~~~~~~~~~~~~~~~ ~~

I A BM— 1 ~~ -Ø.~5 ?>~~~
I
~

SUPPLEM ENTARY NOT -

IL KEY WORDS (ConIMu. on r.v.ra. .id. it n.c.a.a,y mid id.ntify by block numb. ,)

Computational Complexity Separating Plane P

I Computational Geometry Linear Separability
I Analysis of Algorithms Geometric Duality

Polyhedra Convex Hull
I Intersection of Polyhedra

20. A B S T R A C T (ContInuI on rsv •r i • ,id. IS n.c.ss.r y slid Id.ntIfy by block numb.,)

Given two conve x polyhedra in three—dimensional space , we develop an algorithm
to (i) test whether their intersection is empty , and (ii) if so to find a
separating plane , while (iii) if not to find a point in the intersection and
explicitly construct their intersection polyhedron. The algorithm runs in
time 0(nlogn) , where n is the sum of the numbers of vertices of the two

I polyhedra. The part of the algorithm concerned with (i i i) (constructing the
intersection) is based upon the fac t that if a point in the intersection is
known , then the entire i terse i obtained from the convex hull of suitab le

I I ~ I~~J0di 73 ~*73 CE0ITIONJIF ~)OV IS ~~~~~IIS~~~~~~TE UN CLASSIFIED ~~ j -
~O I ‘1 ~/ L,/ j 9 SECURITY C L A S S I F I C A T I O N OF T MIS P AG E Wii.n 0.,. En e,.d)

I~~r1AccTFT ~ n L
$ECURIYY CI.AUIPICATIOM OP THIS PAOI(IPI w. D 11 SØ(SI~~~

I!.

20. ABSTRACT (continued)

geometric duals of the two polyhedra taken with respect to this
point.

L I

U
S

7

.5 .

1
LI

UNCLASSIFED J
SICURITY CLASSIFICATION OF THIS PAGI(Wh mi 0.’. IA,,,.q)

LEVEL~ ~II*550S6C9 0 .

mi ll 1W 10 . _ .

II~

~~ •e1IIUTIII/auIuiiUTI uI~ UILU—F .NG 77—2240
~~l. LUlL U~ B

P 1
_ _ _ _

FINDING THE INTERSECTION OF TWO CONVEX POLYHEDRA

by

D. E. Mulle r and F. P. Preparata

This work was supported in part by the National Science Foundation

under Gran t MCS76—1 732l and in part by the Joint Services Electronics
Program (U.S. Army , U.S. Navy and U.S. Air Force) under Contract DAAB— 07—
72—C—0259.

Reproduction in whole or in part is permitted for any purpose of

the United States Government.

I .-

~ I
Approved for public release. Distribution unlimited.

D D C
-c~r~n~ult~U AUG 2 1978

L) U U L ~

Li

FINDI~E THE INTERSECTION OF l’vlO CONVEX POLYHEDRA

D. E. Muller* and F. P. Preparata t
Coordinated Science Labora tory

University of Illinois at Urbana-Champaign

Abstrac t

Given two convex polyhedra in three-dimensional space , we develop

an algorithm to (i) test whether their intersection is empty, and (ii)

if so to find a separating plane , while (iii) if not to find a point in

the intersection and explicitly construc t their intersection po lyhedron.

The algorithm runs in time O(nlogn) , where a is the sum of the numbers

of vertices of the two polyhedra . The part of the algorithm concerned

with (iii) (constructing the intersection) is based upon the fac t tha t

if a point in the intersection is known , then the entire intersection is

obtained f rom the convex hull of suitable geometric duals of the two

polyhedra taken with respect to this point .

*Also, Departments of Mathematics and of Computer Science.

C tAleo, Depar tments of Electrica l Engineering and of Computer Science

This work was supported in part by the Nationa l Science Foundation under
Grant MCS76-1732l and in part by the Joint Services Electronics Program
under Contrac t DAAB -07-72-C-0239 .

- ~~.
_ - - . ——

—— .— —~~~

I. Introduction

Vtndtng the intersection of two convex polyhedra Lu three-dimensional

spac. is a classical problem in computationa l geometry [1). £ staple but

time-consuming solution to this prob lem La known, and it is so trivial

that it is not •ven worth a tLtsra ture reference. It goes as follow..

Let a and 5 be two convex polyhedra , test each face of ~ against each face

of B to see if th.y intersect; if no intersection La found , then the

intersection of the two polyhedra is empty, otherwise it can be simply

constructed . It is clear that such an algorithm could use 0(n2) operations

if a is the sum of the numbers of vertices of a and 8.
The search for a more efficient procedur. has in th. past met with no

success. Several fact ., however , suggested tha t a more efficien t method

should exist: first , it is veil-known that two polygons in the plane can

be intersected in time linear in the sum of their numbers of vertices [2) ;

second , several analogies exist between the plans and the space , i . e . ,

convex hulls of n-point sets [3] and max ima of sets of a vectors (4J can be

found in time O(nlogn) in both two and three dimens ions. In spits of this ,

no generalization of the polygon intersection algorithm has been found .

In special case s , however , better than quadra tic t ime method s have been

known for s~~~ time. Specifically, after th . development of the Lee-

Pr. para ta algorithm for locating a point in a planar subdivision [3) , it

was r ealized~
l)

that the intersection of two polyh.dra can be found in

time 0(ntog2n) if a vertex of one polyhed ron lies inside th. other

potyh,dron .

(1)
Private comeunications between II. I. Shautos end P. P. Preparata,

flay 19 6. See also t 1) p. 160.

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ___



Lw — - -

~~~

------——-—

~~~~~~~
--

~~~~~ r -

I , ‘

2

Alternately (see [i] , p. 1.62) , Shamos conjectured that polyhedron

intersection could be obtained as a merge step of a divide-and-conquer

algorithm for the intersection of half-spaces.

I In this paper we present an algorithm for solving the problem of

I
intersecting two polyhedra in time O(alogn). The algorithm tests whether

the intersection is empty and, if not, explicitly constructs it. The

I approach is based on the fact that, if a point p in the intersection is

known , the intersection can be obtained through geometric dualization.

Specifically, the two polyhedra are both transformed into their geometric

I
duals with respect to p. and the convex hull of the dual.,vhich can be

found in time O(nlogn), is the dual of the intersection polyhedron

1 (Section 3). When such a special point p is not available,by deploying

known techniques in time 0(ntogn) we can test whether the inter-

I section is nonempty and, if so, obtain a point in the intersection

I
(Section 4). The algorithm requires that each polyhedron be represented

by a very versatile data structure called the doubly connected edge list,

which can be obtained from a more conventional representation in time

linear in the number of vertices (Section 2).

I
I
I
I
I
I
I

~

~

~~~~~~~~~~~~ 
-
~~~~

-- ~~~

3

1 -
2. Derivation of a Doubly Connected Edge List for a Planar Graph

Let V — C’v1~...,v~) and E — [e1,.. ,e) be the sets of vertices and

edges respectively, of a planar graph embedded in the plane without

crossing edges. We assume that (V,E) be represented as follows. To

vertex V there corresponds cell ati) of an array H [l:nJ , which

contains a pointer to the first term of the cyclic list of the edges

incident on arranged in the order in which they appear as one proceeds

counterclockwise around vj. The latter lists are realized by means of two

ar rays VERTU[l:~~~) and N~~T[l :2a] so that (VERT~~[t) ,NEXT [i)) is the forma t

of the list nodes. This representation of the graph (V ,E) is precisely

the one obtained by the algorithm of Preparata and Hong [3] which con-

structs the convex hull of a set of points in three dimensions: indeed the

surface of a convex polyhedron is topologically a planar gra ph . We shall

call this collection of lists the vertex-to-edge representation of a planar

graph.

Although the vertex-to-edge list is one of the most comeonly used

representations for a planar graph, it has the disadvantage that the dual

• graph, i.e., the set of faces of the original graph, ii not readily available.

• For this one would have to develop the
~~~~~to-e~~~ representation of

the original graph in which each face refers to a cyclically ordered list

of edges which enclose it.

A more convenient representation for this purpose is one which we shall

call the doubly connected edge list (DCKL), from which we can obtain

equally easily information either about the edges incident on a vertex

or the edges enclosing a face. We will now describe the DCEL and give in an

appendix the algorithm by which to obtain it from the more conventional



- ~~~~~~~~~~ 
— ‘—

~~~~~

f 4

f
vertex-to-edge representation of the graph in time proportional to the

number a of vertices.

The main component of the DCEL of a planar graph (V,E) is the ç4g~
node. There is a one-to-one corresp ondence betwee n edges and edge nodes,

i.e., each edge is represented only once, whereas in the vertex-to-ed ge

list each edge appeared twice. An edge node consists of four informa tion

fields VI, V2, Fl , and P2 and two pointer fields P1 and P2: therefore the

corresponding data structure is easily implemented with six arrays with

the saute names, each consisting of in cells. The meanings of these

fields are as follows. The field Vl contains the name of the vertex which

is the of the edge , wherea s V2 contains the term inus; in this

manner, the edge receives a conventiona l orientation. The field Fl and

P2 contain the names of the faces which lie respectively on the Left and

on the right of the edge oriented f rom VI to V2. The pointer P1 (P2)

points to the edge node containing the first edge encountered after

Vl(V2) when one proceeds counterclockwise around VI (V2). Names of

faces and vertices may be taken as integers. As an example , a fragment of

a graph and the corresponding fragment of the OCEL is shown in figure 1..

It is now easy to see how the edges incident on a given vertex or e

3 • : -
the edges enclosing a given face can be obtained f rom the DCEL. If the

graph has n vertices and f faces , we can assume we have two arrays

• UVCI :n) and ~tt1:f) of headers of the vertex and face lists: these arrays

can be filled by a scan of arrays VI and Fl in time O(n). The

following straightforward procedure , VERTEX(j) , obtains the sequence of

edges incident on v, as a sequence of addresses stored in an array A.

- r~~~~ _ - — — - — --

~

-

0 5

1

y~ j / 2 Fl F2 P1 P2
-

-

I
____ ____ ____ ____ ____

v2~~~~~~
2 a1 1 2 1 2 a2 a3

f
”

~~~ pV 1 
a2 ~ _ _ _  

I 
_ _ _  _ _ _  _ _ _

a3 2 3 
_ _  

2 _ _  _ _

v4 _ _ _  _ _ _  _ _ _  _ _ _  _ _ _  _ _ _

I Figure 1. Illustration of the DCEL.

VERT~~(J)

1.. ~~~~~ A[I]~~~a0
’-a~~~RV[j], i - 2

‘1 2. If ViCa ] — j then a PiCa] else a P2Ca)

1’ 3. W h i l e a # a 0 do

4. ~~~~~~ACi] ’- a

1 5. If viCa) — j then a - pita) else a P2[aJ

6. i-i+I

Clearly VIRTU(j) runs in time proportional to the number of edges incident

j on Analogously, we can develop a procedure , FACE(j), which obtains the

sequence of edges enclosing ~~ by replacing UV and Vl with HF and El ,

I respectively, in the above procedure VERT~~ Cl). Notice that the procedure

{
~

- - - 
—-



I.

6 

I
.

VIRTU traces the edges counterclockwise about a vertex while FACE traces

them clockwise about a face.

In an appendix to this paper we shall show that the DCEL of a planar

graph can be obtained f rom its vertex-to—edge list in time linear in the

number of vertices.

1

1

~ 

- -~~~ -~~~
-
~~~~~~~

--
~~~~~



- - —

7

3. Finding the Intersection of Two Polyhedra when a Point in the
• Intersection is ~(nown.

3 Assum e that the two convex po lyhedra 7 and ~ in three-dimensional

Euclidean space are represented by DCEL’ s. They are taken as having

vertex sets V _  and V~ and face sets F7 and F~ respectively. With each

vertex v E 7,.. ~ we associate its three Cartesian coordinates

x1(v), x2(v), 
x
3
(v). With each face f E F7 L F~~we associate a half-space

bounded by its plane and containing the corresponding polyhedron. The

half-space of f is described by the inequality

+ n2( f )x
2 + n3(f )x 3 -+~ (f )  � 3 (1)

where n1(f ) , n2 ( f ) , n3(f )  and d(f) are four para~neters characteristic of f ,

[ normalized so that d ( f )  is either 1, 0 , or -1. Our objective is to obtain

a DCEL for the intersection of 7 and S along with the coo rd inates of its

vertices and the parameters for  its faces .

In this portion of the analysis it is assumed that a point in the

intersection of 7 and ~ is known : the proble m of f inding such a point

will be discussed later. Without loss of general i ty ,  the point in the

[ intersection wil.]. be taken as the origin , since if i t  is not the origin a

Simple translation of coordinates will make it the origin. We begin by

assuming that the origin is actually in the interior of each of the two S

polyhedra and henc e in the interior of their intersection. In this case

each face f E FQ~ U F~ represents a half-space of the form

n1 (f)x1 + + n
3

( f )x
3
4-1. � 0. In other words , the constan t d ( f )  = 1

for a ll faces f .

Now, for each of the polyhedra 7 or 5 there is a corresponding polyhedron

or ~~~ respectively, which we shall call its dua l. The dual of 7

is obtained by reinterpreting the coefficients n
1

( f ) , n
2
(f), n

3
( f )  of each 

-



8

face f E F7 as the coordinates of a correspondtng vertex v of

Conversely, the coordinates x
1~(v) , x2(v), x3(v) of each vertex of are

reinterpreted as the coeff~:ienes of a corresponding face f~ of a~~. This

transformation may be regarded as a conventiona l dualizattoci about  the

uni t sphere wi th center at the origin , where points at dIstance ~ f rom the

origin are transformed into planes at dIstance l[L from the origin and

vice versa ( C 7] , p . 233). A similar procedure allows us to form the dua l of 3.

- 
- 

We note tha t this dualiza tion procedure is only possible because the

origin is in the interior of the polyhedro n. ~~t - tMs case, the dual — is also

a convex pol yhedr cn containing the origin. tf the orig in is not in the inter io r,

then some of the inequalities (I) would require d(f) :3 or -1, arid we ha~.e

not defined dual points fo r  such haif—so aces .

‘D) (D) (D) (D)
Let and be the vertex sets of 7 and ~ respectt~ze1.y . It is I 

-

easily seen that the convex hull of the union of acid is the dual

of the intersection c~f 7 and 3. Eence, in order to find the intersection

of 7 and S we may simply use the algorit~~ of ?reparata arid 3on~ Ei] no find

the convex hull of the set of vertices u in time O(alogn) , and

upon taking the dual of the result we obtain the desired polyhedrcn.



- — ~~~~~~~~
- -—~~~~~~ ~

-- -  
- --— -

~~~
-—-

~~~~~
- -

I!
Nov let us assume that the given poin t La the intersection of ~ and 3,

i.e., the origin , is not in the interior of their intersection . Then

certain faces f E F7 U F,.. have d(f) — 0. In fact, these are exactly the

faces which pass through the origin. Let F ’ be the set of such faces .

- 

~~

‘ To each face f ’  F ’ there is a corresponding inequality of the form

n1( f ’ )x 1 + n2 ( f ’) x , + n3( f ’) x3 
� 0, (2)

obtained from (1) by replacing d(f’) by 0. A point ~ in the interior of

S S must strictly satisfy all thequalites of type (1) wi th f € F
7

I ’ that is, none can be an equality . Such a point x exists if and only if

al]. inequalities of type (2) with f ’  E F ’ can be satisfied strictly by some

point. To determine whether there is such a point we firs t fix — 1 and

write the strict form of (2) as

+ n2( f ’) x
2 > - n

3(f’). (2’)

Rare , by normalizing the coefficients , we can take - n
3
(f’) as eithe r 1, 0 ,

1.. or -i.

The question of whether or not (2’) can be satisfied for every

~ F’ is a two-dimensional problem of the type we are solving her. Lor 
p

the three-dimensional case. The inequalities of (2’) collectively

represent a two -dimensiona l convex set which can be found ( [1], p . 158) in p

i i
t ime 0(nlogn). Ac tually , a faster computation of this convex set is possible :

the inequalities of (2’) can be partitioned into two sets , depending upon

which of the two polyhedra they pertain to; each such sat corresponds to a

polygon in the plane x3 — I, and the desired convex set is the intersection

of the two polygons. It is known that finding these polygons and their

~

- - --

~

- -

~ 

----- ~-~ -~- -

~~~~~~~~~~~~

-

~~

- -

~~~~~~~



_ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

•1’

10

intersection runs in time at most proportional to n Li] .

If no solution is found in the above case, the case x3 — — 1 usist also be

• tried. This problem is similar to the previous one except that -a3(f’) is

• replaced by n3(f’) in all the inequalities (2’).

Let us suppose that we have been able to strictly satisfy all inequalities

of the type (2) with x3 — 1 or -1 using the above method. Clearly, they will

remain satisfied if the vector x is multipled by a positive scaler. To

strictly satisfy all the remaining inequalities in (1) whose right hand sides

are all 1, we simply choose such a scalar which makes all the left hand

sides less than 1. The resulting point is in the interior of 7 fl 5.

Jf it is impossible to strictly satisfy all the inequalities of (2),

then arty one which cannot be strictly satisfied , say

+ n2(f”)x2 + n3(f”)x3 
— 0

represents a plane through the origin which contains the intersection of

7 fl 5. Thus , the intersection of 7 and 3 may be found entirely within this

plane. This problem is analogous to the one discussed before and can be solved ,

as we saw, in time 0(n) .



~~~~~~~~~ ~~~-~r~~ - ---rr~
- -

ii

4. Iinding a Point in the Intersection of Two Polyhedra

In the preceding section we have shown that the intersection of two

convex polyhedra can be obtained when a point in the intersection is known .

Thus, if the intersection is nonempty, all that is needed is to find one

such point. The objective of this section is the implementation of this

task.

• L Given a convex polyhedron C, a plane is called a plane of support of

O if it has at least one point in coemon with C and all interior points of

O ii. on one side of the plane. Hereafter we shall only consider planes

of support parallel to the x3-axis and briefly refer to them as vertical.

The intersection of C with its vertical planes of support is, in general,

an annaler region R(~2) of the surface C vhich,in the absence of degeneracies,

reduces to a cycle of edges. The projection of R(c7) on the (x1,x2) plane is

a convex polygon Ok (figure 2), which is the convex hull of the projections

of the points of 0 on this plane.

X3

H X
2

Figure 2. A convex polyhedron 7, the annular region R(O) and the projection
polygon 7*~

— I l l

— — ---~~ -~------- --~ —-~——--~~-

12

Th. region R(a) is easily obtained from the DCEL description of

0 as follows. For arty face f~ of 0, the normal to f~ is the vec tor

(n1(f ~) , rt2 (f
t)~ r*3(f ~)). It i~ perpendicular to f~ and points toward the

inter ior of 7. Given arty edge e of 0, let f~ and f~ b• its adjacen t

faces. Then e E R(c7) if and only if

n
3

(f ~) ‘n3(f
1
) � 0. (3)

There fore, we begin by scanning the edge set of C until we find an edge

S which belongs to R(2), by verifying condition (3). At this point, we

select one of the two vertices of e, call it v. Among the edges incident

on v there are either one or two new edges , different from a, which

belong to R(c2) and can be easily found by applying the VERT~~ procedure

described earlier , to the DCCL. Thus we can advance in th. construction

of R(a), which will be completed upon re-encountering the initial edge e.

Once R(c2) has been computed , 0* is trivially obtained. All of these

operations can be carried out in t ime proportional to the number lv7~ of

th. vertices of 0. Thus we have the first steps of the algorithm ,

given polyhedra S and .~~~ with + — a:

Step 1. Find and S. (This step runs in time O(n).’

Step 2. Using Shatnos-}Ioey ’s polygon intersection algorithm l , f ind

the intersection of and -?. If the intersection is empty , halt , for

• S S is also empty. Else let p* be a point in the intersection of 2* and

(Th is step runs in time 0(n) , according to

* * * *Under the projection of I to .? , p — ~x1(p ‘,x2~.p ~
) is in

a
-- ~~~

_ _ _

_ j W ~~W ~~ z -
— -

13

general the image of a vertical segment of 2 which reduces to a single

point in some cases. In any case, the preimage of p* in 2 is easily found

in time 0(n) as follows . For each face f F
2

we determine the x
3-coordinate

of the point on the corresponding plane which projects to p*; spec if ically,

this x3-coord inate is

a(f) — (n
1

(f)x
1(p*) + n2

(f) x 2(p*) + d(f))/n3(f).

Let ~~
‘ m th n~(f) and ~~

“ = max ~(f). Then &
n
3

(f) < 0 n3(f) > 0

and &‘, with ~~~
‘

~~ a”, are the x3
-coordinates of the extremes of the

segment which is the preimage of p* in 2; we similarly define 9’ and B”,

with 8’ � 8”, for the analogous segment in S. If the two segments overlap,

then any point in their common portion also belongs to the nonempty

.1
•

intersection of C and /5. Otherwise assume, without loss of generality,

that &‘ > 8’ • Then we define the near-sides of C and S to be the sets of

faces (f~~f~ is a face of 0, n3
(f.) <0) and is a face of 3,n

3
(g~) > o) , s

respectively. Clearly both near-sides are obtained in time 0(k5,l + ~V 5j) 0(n)

by traversing, in a straightfo rward manner , the DCEL descriptions of C and ~~.

By projecting the near-sides of C and -S on the (x1,x2)-plane we obtain two

planar straight-line graphs (PSLG’s) G7 and G1~
, with respective vertex

sets Vb and V,~,. Thus we have :

Step 3. If the pre— images of p* in C and S under an x3-projection

have a common intersection, then halt , for any point itt this intersection

is internal to 2 ~ S. Otherwise obtain C~ and G5. (The pre—intages of p*

are found in constant time; C5 and C
3

are found in time 0(n).)

Let ~ be the closed domain contained in the intersection of 2~ and

For each point u E .~~‘ it is cor.cenient to define the function S(u),ca].led

S —— ~~~~~~~~~~~~~~~~~~ — — — —~~~~-~~—~~~~~~~~

—-5----— -5- -- - - - -.~ - ,

14

x3-distance,
as follows. If r(u) and ~(u) are the x3

-coord irtates of the

points on the faces of the near-sides of S and ~, respectively , wh ich

both project to u, then

~(u) — a(u) - ~~(u)

Let us now ~ri.1”e the function 5(u) defined on .~~. Imagine superimposing

C5 and G~ to create a new vertex , conveniently called a pseudo—vertex ,

at the intersection of each edge of 05 with an edge of G~ . Denoting by

V* the set of pseudo-vertices thus obtained , we can define a new PSLC 0*

~tth vertex set U V~ U V*. The vertices of V~ and V~ will, be called

true vertices. Thus the domain .9 is subdivided into regions by 0*. Notice

that inside any region of 07 the function a(v) is Linear in the (x1,x)

coordinates at v; similarly , for the function 8(v) inside any region of G~.

• Thus in any region induced by G* in ~~~, the function 8(v)—tx(v) - 8(v) is linear —

in x1(v) and x2 (v) . Moreover , a(v) is convex-downward and 8(v) is convex-

upward ; it follows that 8(v) is a convex-downward function. We conclude

that the minimum of 6 occurs at a vertex of 0*. Notice that V*(, and

• hence U U v*~ ,could be 0(n 2): in fact, it is not hard

to construct two planar graphs, each with v vertices, so Chat, when

superimposed , (v — 1) 2 intersections of edges are obtained.

Since, by hypothesis, a(p*) a” and B(p*) — 8’ , we conclude that

8(p*) a” — B ’ > 0 . It follows that the intersection. of 7 and S is

non.mpty if and only if , for some v E .9, 8(v) � 0. Therefore, either we

find one such point, or show that mitt 8(v) > O~vE .fr
To this end , we begin by evaluating 8 at true vertices of 0* in .9.

This is easily done if, for each a E we determine the region r(a) of

to which a belongs . If r(a) is not the infinite region of the plane in

the subdivision induced by ~~ then r(a) corresponds to a unique face of

— _~~~~~=—-- -~~~--~~~~~~~~~~S -~~~~~-~~---5-- S


~~~~~5 -
-

— - -  -5

15

the polyhedron 0, and 5(a) is easily computed . Similarly, we can compute

6(b) for each b E in fr. The determination of r (a) has been called the

location of point a in the planar subdivision induced by G~ [5 J and could
be done one point at a time. However, a faster algor ithm has been recently

developed [6 3 for collectively locating all the points of a set. According

to this technique the members of can all be located in regions of the plana r

subd ivision induced by G
3 

in time ~~~~~~~~~~~~~~~~~~~~~ for sonic constant c,

and , reciprocally , the members of can all be located in regions of the

planar subdivision induced by G~ in time ~~~~~~~~~~~~~~~~~~~~~~ Therefore

in total t ime 0((IV +tV~~t)log LV ‘~V,~t) 
— ~~~~~~~~~~~~~~~~~~~~~~~~~~ — O (nlogn)

all the true vertices can be located. Once a vertex , say,of V~, has been

located in C3, the x 3-coordinates of its preimages in I and -3 are obtained

in constant time. This is summarized as follows :

Step 4. Locate each true vertex of G-. in the planar subdivision induced

by G.~ and vice versa. (This can be done in time 0(nlogn) using the

algorithm of 6.) If there are no true vertices in .~~ go to Step 7.

Else evaluate 3 at each true vertex of G~ . (This can be done in

additional time O(n).~ “

Suppose at first that there are true vertices in .~~~, and assume that

for some true vertex v (say , v ~ V,~.) We have 5(v) � 0. The vertical

line through v intercepts the near-side of I in a vertex a and the near-

side of 3 in a point b , and obvious ly ~(v) — x 3(a ’) ~ x 3 (b) ~ (v) .  Thus ,

we have a point p* far which .~(p*) > ~(p*) and a point v for which

-~~~~~~~~



5-- —---fl - ~.-..- - - an ~~~~~~~~~~~~ Pai~S5 - - -

16

~ (v)  ~ P ( v ) .  Consider now the plane , parallel to the x
3
-axis and

containing the points p* and V . The intersec tion of this plane with

the two polyhed ra I and ~ is shown in figure 3 (where the points p ’

and p” have been defined). By convexity , the segments ap ’ and bp”

are entirely contained in I and 3 respectively, and so their point of

intersec tion q belongs to the intersection of I and P. The coordinates

of q are thus obtained by straightforward calculations .

S

- 

~~~~ 
\\

~ — -

Figure 3. Finding a point in the intersection when ~S(p *) > 0 and ~‘(v) ~ 0.

Assume next that 5 (v) > 0 for all true vertices v E V~. U V’ , arid
‘-4

let v* be a t rue vertex such that S t v *) — nun ~3 (v)tv E V~. U V~~.
p

We cyc l ically test each of the edges of I incident upon v* to determine

whether th e function ~S decreases as one moves a long the edge awa y from v*.

If it fai ls to decrease fot all edges incident upon v*, then v* is an
p.

absolute minimum of the function 8 Since ~ (v*) > 0, the polyhedra ~7

and 3 do not intersect.

-

-T

17

Step 5. Obtain v*. If v~ is an absolute minimum and 5 (v*) > 0,

-‘aJ.t , for ~7 -P — ; if 5 (v*) > 0 but v* is not an absolute minimum , go

to Step 6; if 5 (v *) ~ 0, then there is a point q E S ~ 3, obtained as

the intersection of the diagonals of the trapezoid
formed by the

x
3
-projectton pre-images of p* and v* in 2 and 3. (All of this work can

be done in t ime 0(n).)

The remaining case is when S (v*) > 0 but v* is not art absolute minimum.

Then S decreases as one moves along at least one of the
edges - call it e -

incident upon v*, arid on this edge we locate a pseudo-vertex p. One such

pseudo—vertex must exis t , for otherwise the uiirtimality of ~ (v*) would be

J contradicted. Let r (v*) be the region of to which v* belongs (known

from Step 4) ; to locate pseudo-vertex p, we cyclically test each edge of

r (v*) in turn and find the one which intersects ~~~~ Clearly 5(p~ < 3(v *).

Step 6. Locate a pseudo-vertex p adjacent to v*, such that 8(p) <

If 5(p) ~ 0, then, since 5(v *) > 0, there is a poin t q E I ~ 3, which may

be found as in Step 5; otherwise go to Step 7.

We must how consider two cases. The first is when there are no true

* *
“ p -

vertices in ~ (St ep 4) ; than the boundaries of I and S must intersect ,

so the point p* may be chosen at an intersection of these boundaries arid

is therefore a pseudo-vertex. The second case is when -5 (p) > 0 (Step 6).

Both these cases are treated by using an algorithm , called the ~g~~~rin

which wanders among the pseudo-vertices of G*
arid which uses

at most 0(n) time. Thus we have:

v* happens to belong to more than one region of G~~, then the edges of -
-

• all such regions may have to be tes ted to find the unique one which intersects

e. In any case, the number of such tests is 0(n) .

--

- —-;
~ ‘~~~~~~~~

— -
~~~~~ ___  - ~~- - ~~~~~~~5__  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

18

Step ‘. If the test of Step 4 fails use p*, while if the test

of Step 6 fails use p, as the starting point of the wandering al&orithm

(to be described below), either to find a pseudo-vertex p such that

5 (i) S 0, to which the method of Step 5 can be applied , or find a

pseudo-vertex p such that S (p) mm ~5 (v) . (We shall show below thatm ~ v E V
the wandering algorithm runs in time 0(n).)

Before describing the wandering algorithm , we observe that the starting

point of it is a pseudo—vertex , either p or p*, which has a smaller value of

than any true vertex . I.f we imagine, for purposes of proof , ~i contour line of

~ passing through p or p* we enclose a region ~ C 1~ which contains a

pseudo-vertex p having minimum 5
~~ m~ • We note that R must be convex. ‘

Also let E’ and E~ be the sets of edges of G~, and G ... respectively which

intersect 9. Since no true vertices lie in S~, each edge in E,, U E~
must separate ~ into two convex regions. No two edges in E~, can

intersec t in -~~~~, nor can two edges itt E . Also , the function S is convex

downward as one travels along any edge of E~, U E1~ and its minimum must lie

somewhere in i~, because the boundary of ~ is a contour line for 5. We

shall call this point on an edge e E~, U E~ where S has

a minimum value , a min imum_point of the edge e. I t is unique except in

degenerate cases. The value of 5 at this point will be called the

minimum value of the edge e and denoted by min(e).

_
5-—- 5-’ - —5.—-—--— —~-—------ - -— I_____ ~~~~~~~ ——— — - -

- -

—

.5- —r~
— —- -———

~~~~
-
~~~~~~~~~~~

-- - -~~ ~~~~~~~~~~~~ _fl, ~~~
___- _—__

19

We assume momentarily that the faces of both polyhedra are triangles

and, if they are not ,tha t we shall triangulate both polyhedra . Notice that

itt the tr iangulated polyhedra the number of faces remains less than

twice the number n of vertices and the number of edges remains less than

three times t , so they both remain 0(n). Each pseudo-vertex p ’ in ~ is

the intersection of two edges e’ E E’ and e ’ E E ’ and is therefore shareda I b S

by four regions itt G*; the union of these four regions is referred to as

the crown of p’ and is the locus of the points which can be reached from p ’

without crossing any edge. Notice that e’ is shared by two t r iangular

faces of G2, who se union is a quadrila teral region ; a similar remark holds

for e~ . Thus the crown is the intersection of these two quadrilateral

regions, and the crown boundary contains either 8, or 10, or 12 pseudo-

vertices (see f igure 4 a, b, c, respectively) . The fact that the number

of crown vertices is bounded is a consequence of the hypothesis that the

polyhedra have been triangulated .

(a) (b) (c)

Figure 4. Illustration of the possible cases for the crown of a pseudo-
vertex.

Given any pseudo-vertex p ’ as the intersection of e~ and e~, the pairs

of triangles bordering these two edges cart be obtained in constant time

-
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - - -5- - -
- - 
- 

~
.- -  ‘5  5-,, 

20

from the doubly-connected edge lists describing 2 and P respectively. Once

these triangles are available , the pseudo-vertices in the crown can also be

obtai ned i~ time bounded by a constant , and so can their values of ¶ .  We

now give the

Advanc ing ste p of the wandering a lgor i thm:  A pointer is moved from the

current pseudo-vertex p ’ to a pseudo-vertex p” which a t tains the minimum

value of among al l  pseudo-vertices in the crown of p ’.

Of course, the step is voided and the algorithm terminates if p ’

attains the minimum value of 5 along the ed ges e~ and e~ intersecting

in p ’ : in this case if S is positive the two polyhedra do not intersect

(case (iii) in Section 5). In the other case (5 decreases either along

e~ or e.) the advancing step is effected, and in ac tua l practice can be

carried out without exploring the entire crown of p ’, but simply following

a path of edges along which 8 decreases.

An additiona l algorithm simplification is that, as we shall show ,

polyhedra I and S need not be triangulated before applying the wandering

algorithm. In fact, only those faces of Ga. and will be triangulated

which are actually traversed by the wandering algorithm. Specifically, let

p’. the intersection of e~ and e,~, be the current pseudo-vertex (see Figure 5 ) .

Referring for simplicity only to polyhedron I, let f
1 

and f
2 be the two

faces of C1 sharing e~ . Itt the doub ly connected edge list of G
~ 

we can

Figure 5. Partial triangulation of ~~.

- -  
5 _- 5~~~~~~~ --~~~~~~~~~~~~~~~ --~~~~~ - 

- -
~~~~~~~~~~


_________________ - z -~~ ~~~ 5- - -
—

~~~~~~~~~ 
______________________________

21

obtain in constant time the edges e~ and e~’ which follow e~ itt the edge-sequences

of f
1 

and f 2, respectively . If f
1 
is not a triangle , we connect the non-

overlapping ex tremes of e~ and e~ , and we do likewise for f2. The

introduction of any such new edge in the doubly-connec ted edge list requires

the modification of two pointers and the use of two other calls for con-

struction of the appropriate record . All this can also be done in constant

time. We conjecture that this insertion is not really necessary, but the

present proo f on the time perfo rmance of the algorithm depends upon it.

Since the wandering algorithm moves from p ’ to p” only if 5(p”) <

it is obvious that the algorithm will terminate at a point p such that

is the minimum value of 5 for all pseudo-vertices in ~~. Even though

the total number of pseudo-vertices in P. could be 0(ti2) ,  we shall now prove

that the number of advancing steps is at most 0(n).
,1 - 

Recall  that for an edge a in either or min (e)  denotes the minimum

value of S on e. Let pseudo-vertex p ’ be the intersection of e~ E E~, and

e~ ~ E,~ ; we now define m (p ’)  * max(m in ( e ’ ) , min (e~ )’i .  Clearly 5 ( p ’) � m ’(p).
- 

Lenzna 1: Let p ’ be a pseudo-vertex in s~; if m (p ’~ = 
~- ( p ) ,  then

3(p ’) m (p’) =

Proof: Let us assume the contrary and obtain a contradiction. In figure 6

let a ’ and b ’ represent minimum points on e ’ and e~ respectively which are

nearest to p ’. ~y our assumption, 8(a’) 
z 5(b’ )  — and hence by

convexity, every point along the line segment L between a~ and b ’ also has

this same 8 value. Let a1 be the pseudo-vertex closest to a’ in the portion

of e~ between a’ and p ’ (possib ly, a1 and p ’ coincide). The Line segment L

crosses a region of G* bordering with a’a
1
. Since the value of S is linear

within this region and it achieves the minimum value 5(p ) at an interior



5- - - - - -5 -- ---  ___

22

a ’

‘
a

p 1/

a ’ — 
— 

—

Figure 6. Illustration for the proof of m(p ’) — S (p~) 8(p ’) — m (p’).

point, it must have this value throughout the entire region. Hence,

8(a1) — 5
~~m~’ 

contradicting our assumption that a’ is the neares t minimum

point to p ’ on e~. This proves 8(p’) —

Assuming now that 5(p ’) > 5
~
Pm~ ’ 

we see by Lemma 1 that m (p’) > S (p ) When

the wandering algorithm is applied at p ’, it steps to a new pseudo-vertex p”.

Lemma 2: m (p”) <

Proof: We distinguish two cases:

(1) p’ and p” do not belong to the same edge. Let p ’ be the inter-

section of a’ and e.g, and let p” be the intersection of e” and ej~ (see

figure 7(a)). Let be the pseudo-vertex in ~ defined above .

We claim tha t a straight line from to p” cannot intersect the interior

of the region f of G* to whose boundary p ’ and p” belong, except at p”.

In fact, if it did, any such point of intersection would, by convexity,

•

1~

_ J—--5 - _:__~ _ - _ .___~~~_~ ~~~~~~~~~~~~~~~ - -- .~ —~ - - - r . .  &—--— ~~ - - -



5- —,- --——~~~~
-..-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘-5 :~~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- — - — -- --5—S.-,——
~~~~~~~~~~~~ 

.---

23

a’

minimum
~~~~~~~~~~
HT

rI,Point of a~
/

~~~~~~~~~~~~~~~~~~~~~~ o f e ~ 

/

/

(a) (b)

Figure 7. Illustration of the proof that tn (p ”) <

have a value of 6 as low as ô(p”). Since p” is a minimum point of f, this

• . would imply that all the points of f have the same value of 8, contradicting

6(p ’) > 6(p ”). As a consequence, either e~ or e~ separates ~m 
from p ’,so

• ~m 
belongs to the shaded regions in figure 7(a).

Assume , without loss of generality, tha t p ’ , and hence e~ , is separa ted

• from p by e~. Then, since e~ does not cross e~ in ~~~, the straight line

between p and the minimum point of e~ intersects a~ in a point a”. By

convexity, min(e~) � 6(a ”), with equality occurring only if min (e~) — 5(p).

Assuming equali ty, since we have seen that m (p’) > 8
~~m~ 

and we have

min(e~) — 6(a”) — min(.~) - 6(p ), we obtain m(p ’) > min(e~). Assuming instead

that szin(.~) > 6(a ”)~ since by definition m (p’) � min(e~) and 8(a”) ~

we also obtain m (p’) > miu (e”).

Two subcases must be considered. First, assume p ’, and hence e~ , is also

sepa rated from 
~m by e~ . Then by art identical argument m (p’) > min(e~), so

) m(p”) — max (mLn(a~) , znin(ej)). Second , assume it is not , as shown in

figure 7(a) . We now show that min (e~) ~ min(e~) thus reaching the same conclusion. 

-5 - 5- -- -5 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
~~~~~~



- -5 - - •~~~~~~~~~~~ -5•• 5_•5-~~ 
__

~~~ - — - •

t

23—B

In fact, since S (p”) is the minimum value in f, the minim point on

e” occurs either at p” or along a” on the opposite side of p” from f. A

straight line drawn between this minimum point and p intersects ej at a

point b” such that 8(b”) � inin(e~) , by the convexity argument used earlier.

But 8(b”) � min(ej)1 whence min(e~) � min(e~) , as claimed.

(2) p’ and p” belong to the same edge. Without loss of generality, let

p ’ be the intersection of a’ and e~1 and let p” be the intersection of e” and

e~ (see figure
7(b)). By the convexity argument, e’ is separated from

~~
by e~ (i.e.,

~m
belongs to the shaded region) . As in case (1) , we

can show that rn(p’) � min(e’) > min(e~). To prove that min(e~) � min (e~)

we note that the minimum point of a” must be p”, for otherwise p” would not

attain the minimum of 3 itt the crown of p . Thus

m(p ”) = tnax(min(e”), min (e~)) min(e”) < m (p ’) , as clauned .O

Theorem: The number of advancing steps performed by the wandering

algorithm is 0(n).

Proof: We have shown that as the wandering algorithm moves from one

pseudo-vertex p ’ to the next, the value of m (p’) decreases at each

step. Each value of m(p ’) is the minimum value of one of the edges in

E,!. U E,. Hence, the number of distinct values which m(p’) can assume

is no greater than + IE,~l, which is 0(n). The number of steps

taken by the algo rithm there fore is 0(n) .O

Since the time taken by the wandering algorithm is 0(n), the time

taken by the entire algorithm remains 0(nlogrt).

1~

-
—— -- -- _• ~~~~~~~~~~ -S

F - -
-

24

5. An Application: Finding a Separating Plane

The preceding method can be used to solve efficiently the important problem

of linear separability in three dimensions, i.e., testing whether two finite sets

of points A and B are separable by means of a plane, and, if so, f inding one

such plane.

Since two finite sets of points are linearly separable if and only if their

convex hulls do not intersect [83, we begin by obtaining the respective convex

hulls of the sets A and B by means of the Preparata-Rong algorithm [33. Letting

lA l + I B I — n this task, which is completed in time O(nlogn), yields two

convex polyhedra Cl and ~ such that fv~ + n. We now apply to a’ and ~&

the algorithm described in Section 4: any time the algorithm declares that Cl

and ,& do not intersect, we construct a separating plane.

We now recall that C and ~& are found to be disjoint in three exclusive

cases , already referred to it~ Section 4;

(i) after projecting R(Q) and R(i~) on the plane (x1,x2), the polygons

Cl* and i~~’ are disjoint;
-

(ii) after evaluating 6 at all true vertices of G* we find that

6(v*) — mm 6(v) > 0 and v* is an absolute minimum;
v E U V~

(iii) after applying the wandering algorithm we find that
~~~~ 

> o•
In case (1.) it is sufficient to find a straight line L separating

Qk and ~~~~~ , since a plane containing L and perpendicular to the plane (x1,x2)

separates C and &. The line L can be found in time 0(n) by an obvious

• modification of the Preparata-Rong algorithm for planar convex hulls (C3],p. 90).

Cases (Li) and (iii) can be handled jointly by the following considerations.

Rather than constructing one separating plane, we cons truct a locus of separating



25

planes and make a selection in this locus. Let u be the point at which the

algorithm terminates with the result that C and 8 do not intersect; obviously,

either u — v* or u — p .  Also let u’ and u” be the pre-iniages of u (with

respect to x3-projection) in C and t9,respecttvely. Assume at firs t that

u — v* and , without loss of generali ty, let u ’ be a vertex (in Va). Consider the

cycle F of ~.-e faces sharing u ’; for each f E F, imagine app lying the vector

(n
1
(f) ,n

2
(f) ,n~3(f) ) — n(f) to the origin; recall that n(f) is normal to f and

pointing toward the exterior of C. Then the set of directions ~~(f) I~ E F)

def ines a convex cone C~ such that any direction internal to it is normal to

a supporting plane of C. Notice now that, when u — 
~m’ 

point u’ belongs to some

edge ca of ~7 and C~ degenerates into a plane wedge delimited by the normals to

the two faces of C which share e~.

For u” the convex cone C8 is analogously def ined , with the only modification

that the directions of the vectors n(f) are reversed • The cone can assume the follow-

ing forms : if u — v*, then C8 is either nondegenerate, or a plane wedge, or

a half-line, depending upon whether u” in 8 is either a vertex,or a point in an

edge, or a point in a face, respectively ; if u — 
~m’ 

then C8 is a plane wedge.

The solution to our prob l~~ is C~, fl C8. Notice , however, that this

intersection consists of a single ray in the following two cases: (1) u —

in which case they ray is the co~~~n normal to the edges which contain ii ’ and u”

in C and 8, respectively; (2) u — v* and u” is a point in a face of 8, in which

case the ray is the normal to this face. In the resataing cases (u — v*, u’ is

a vertex, and u” is either a vertex or a point in an edge) we fi rs t find a

plane which intersect.s C~ in a bounded polygon; this can be done in time

0(n) as follows , For each face f E F , let point t ( f)  be the terminus of

the vec tor n(t). Let f1 and f2 be two consecutive faces in the cycle F.

We consider the set of planes determined by triples of points (t(f1).t(f2)t(f~)) 

- - • - - —-----



-~ —.L_ —.— ———,—- ‘
~
- 

~~~ 
•,-,•- -

~~
..—

~
.-‘--

~ -— —r

26

with j ,~ 1,2 and f~ E F. For each such plane, we call positive the half -

plane bounded by the straight line £ through t (f 1) and t (f 2) and containing

t(f~). The half-planes of this set have line £ in common and are comprised

between two extreme ones , one of which intersects all the edges of C
~
:

the latter defines our desired plane. Next we intersect C8 with this plane and

obtain either a polygon or a straight-line sa~ nent: in any case the problem is

reduced to finding the intersection of two plane polygons , which can be solved

in time 0(n) [ii. This enables us to find a vector orthogonal to a

separating plane; the construction is completed by requiring that the plane

contain a point internal to the segment u’u”.

Thus, we conclude that the construction of a separating plane of two

three-dimensional sets of points, if it exists, can be effected in time

0(nlogn).

_ _ _

—
5-

~~~ 
‘.

~ ~~
—

~~~~~~~
—-

‘——5- —F
_

~~~~~~~~~~~
- - - _ 5-

~~~~~~~~~~
’-_

27

References

1. M. I. Sh.mos, Computational Geometry, Dept. of Coup. Sci., Yale
University,1977. To be published by Springer-Verlag.

2. N. I. Shamos, “Geometric Complexity,” Proc. Seventh Annual ACM Symposium
on Theory of Computing, pp. 224-233, May 1975.

3. F. P. Preparata and S. 3. Hong, “Convex hulls of finite sets in two and three
dimensions,” Co~~ mications of the ACM, Vol. 20, N. 2, pp. 87-93, February 1977.

— 4. H. T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of a set
of vectors,” Journal of the ACM, Vol. 22, No. 4, pp. 469-476, October 1975.

5. D. T. Lee and F. P. Preparata, “Location of a point in a planar subdivision
and its applications,” SIAM Journal on Computing, Vol. 6, N. 3, pp. 594-606,
September 1977.

6. F. P. Preparata, “Location of a set of points in a planar subdivision,”
submitted for publication. Available in “Steps into Computationa l
Geometry,” Report ACT-l, Coord. Sci. Lab., Univ. of Illinois, Urbana,
February 1977.

7. G. Ewald, Geometry: An Introduction, Wadsworth, Belmont, Calif., 1971.

8. J. Steer and C. Witzgall, Convexity and Optimization in Finite Diinensions,I,
Springer-Verlag, 1970.

p

I

_‘
I

— 5-

~~~ _J._L !JL._ .~~~ L~~.



5 - 5 - 5 -5 - 5 -

~~~~~~~~~~~~~~~~~~
: - :-- -’--- - - - -

~~~~~~
- ’ - — -

~ 
-5--- -- -

f - I

28

Appendix

As we said in Section 2, the vertex-to-edge list of a planar graph

is a collection of edge lists, referred to as input edge lists, stored

in arrays H[l:n], VERTEX[l:2n), and NEXTC1:2n). In the DCEL, we can

identify n cycles of edges around a vertex, called vertex cycles, and

f cycles of edges around a face, called face cycles. The construction of

the DCEL is carried out in two phases. In the first phase, we fill the

arrays Vl, V2, P1, and P2 , hereby constructing the vertex cycles . In the

second phase we generate the names of the faces and fill the arrays Fl and

F2 , hereby cons tructing the face cycles .

Informally, phase-l of the algorithm works as follows. The input

edge i~ ts are scanned one at a time, in the order v ,v2,...,v .  While

scanning the input edge list of V
j 
an edge (vj~

vi) is entered into the DCE L

only if i > j: in this manner we ensure that each edge is entered only once.

Thus any edge (vj~
vh) with h < j is already present in the DCEL, since it

was entered while scanning the input edge list of Vh, earlier in the —

execution of the algorithm. All that is needed now is therefore the

realization of the appropriate linking of such (vJ)vh) into its position

in the vertex cycle of v • To effect it we must determine the location of

(vj$vh) in the DcEL. This can be done as follows,with additional storage

0(n). Suppose that, while scanning the input edge list of Vh, the edge

(vh~vj) is to be entered (obviously h < j). This edge is linked permanently

into the vertex cycle of vh and temporarily into a list of edges of the

form 
~~r’~j~ ’ 

with r < j. The members of the latter list referred to as

the temporary list of are linked in reverse order to that of their

occurrence during the execution of the algorithm. Thus this List can be managed 
—

- - --- 5 - - - -. -  ~~ - —----- -- - _ —. --~~~~~~~~~~~~ -— - - —-‘ - --~~~~~ - . - .— ~~ 



—~~ - —-.-—--——---

29

with only one pointer stored in an array LAST[1:a]. With these provisions,

the location of (v
h~
v
j
) is easily obtained: in fact, prior to linking the

vertex-cycle of V
j 

we scan the temporary list of V
j 
starting from LAST[J)

and store the location of (vh,vJ
) into cell BCh3 of an auxiliary array

B[l:n). Notice that the latter array is only scratch memory and will be

used repeatedly for each vj. Therefore the additional storage needed consists

of the arrays LAST and B, both of size 0(n), and of program variables

a1, a0, u, t, r, 2.

We can now give the algorithm.

CO?~ TRUC T VER TEX CYCLES

1. ~~~~~ a ’-l

2. for J .- ~ ~~~~ 
1. until n do L&ST[J] - A (Coument: initialize LAST)

3. for j -l~~~!p l untilndo

4. be&in £ - LAST[J)

5. While £~~~Ado

6. begin p - Vl[L]

7.

8. £.- P2[L]
p

end

Coument: Loop 5-8 fetches the locations of all

edges (v ,v
1

) with r < j by scanning the temporary

list of V
3 
and stores them into the array B. This

step is obviously void for 3 — 1.

9. t ’- Hfj ],

10. r ‘- VEm~EX[t)

- -



30

11. Ifr> jth e n

12. begin Vl[a] 3, V2[a] — r

13. HV[J] a0 a, u ‘- 1

14. P2[a] LASTEr]

15. LASTEr) - a

16. a’- a+l

end Cosment:Steps 10-15 initialize the vertex cycle for V
3

17. elseRV [j J -a 0 - B[r) , u 2

Co ent: Steps 8-17 process the first member (Vr~
vj)

of the input edge list of v
3
. If this edge was not 

—

previously encountered steps 11-16 are executed;

specifically, the edge is entered in step 12. Variable

a0 is used to denote the location of the last member

of the vertex cycle being constructed.

18. While ~EXTEt) i’ ii[j] do

19. begin t - NEX TEt]

20. r - V E R T E X E t )

21. If r > j  then

22. begin ViCa] 3, V2[a] r

• 23. P2[a] LASTEr)

24. LASTEr] 4- Pu[a
0
) a,

25. a0 — a , u - 1

26. a a+l

- 1~ _else



— —‘. ,—‘ ..-.-—- .5 

31

27. be~~~ puEa0) — BEd

28. a0 BE d, u — 2

end

end

29. pu1a0) RVEJ)

end

end

Coument: Steps 18-29 complete the construction of the vertex

cycle for v
3
. Specifically, loop 18-28 successively processes

the edges incident on v
3 

and either enters them into the vertex

cycle (Steps 21-26) or simply links them into it (Steps 27-28).

Step 29 closes the vertex cycle.

To evaluate the running time of the algorithm just described, notice

that each edge is processed exactly twice: once to be entered into a vertex ; 

j
cycle and into a temporary list, the second time to be linked appropriately.

Both these operations take constant time, and since the number n of edges is

0(n) , 0(n) time is used to fill the arrays VI, V2, P1, and P2.

To complete the construction of the DCEL we must construct the face

cycles. The next algorithm, CONSTRUCT FACE CYCLES , starts from the partial

DCEL which is produced by the CONSTRUCT VERTEX CYCLES procedure. The algorithm 
- 

-

will scan the DCEL, using an integer a as a counter. If FlEa] and F2[a] have

already been filled,it advances to the subsequent edge; otherwise it generates

the name of new face (using a counter s) and traces the edges enclosing it

filling the appropriate P—fields. The algorithm terminates when 2in

filling operations have been performed: an integer k is used to control

this event. 

-~~~~~~~~~ - -- --- -..- - - - - . -~~~~~~~- --- - -~~~~~~~~~~~~~~ 
-

-
5-

~~~~~
- - - ’

r’!. . -__ — -~~~~~~~.~~~~~~~~~~~~‘—---— -— ~~ — 4-5,

32

CONSTRUCT FACE CYCLES

1. begin for 3 — I ~~~~ 1 until m do FlEji 4- F2Ej) ‘- A

2. a - s ~~- k - 1

3. Whi le k ~ 2m do

4. If Fl[a] ,~ A and F2[a) ~L A then a — a+l

5. else ~~~~ If FlEa] — A then u I else u — 2

6. Fufa] s , c — Vu[a), ar(s) a0 a , k - k#1

7. a ’- Pu(a) —

8. While a~~~a0 do

9. begin If Vl[a) — c then u 2 else u ~~
- 1

10. Fu[a) — s , c — vu[a), k k+l

II. a ’— Pu{a]

12. s’- s+l

end

end

end

Since in the latter algorithm each field FlEa] or F2[a) is being

processed at most twice (once to be filled in steps 6 or 10, and possibly

once to be just inspected in step 4), the running time is 0(n) . This and

the analogous result for the vertex cycle algori thm substantiate our claim

that the DCEL can be obtained in time 0(n) from the original vertex-to-edge

list.

—. 5-
— - 5- -5 --5 -5- -

